Will Cunningham

Perimeter Institute

July 24, 2019

Overview

Causal Sets

We must understand the action in order to use the path integral approach, learn the phase structure, and identify fixed points & critical exponents

- Brief background on causal sets
- Causal set action: what do we know?
- Problems with timelike boundaries
- Measuring boundary geometry: theory
- Measuring boundary geometry: numerics
- Current work and open problems

- Causal Sets
- Divergence of the Action
- Measuring Curvature: Theory
- Measuring Curvature: Numerics
- Open Problems

Causal Sets

Causal Sets

Discrete spacetime is represented by a directed acyclic graph (DAG): nodes are fundamental elements of spacetime and relations indicate causality.

- Hawking/Malament: causal structure is enough to recover topology
- Many results on kinematics all geometric structure should be encoded in the graph
- All causal sets fall into two categories: manifoldlike (random) and non-manifoldlike (crystalline)
- Discretize a continuum space via Poisson point process (sprinkling) into a compact region
- General causal sets generated using a Markov chain
- These phases are separeated by a first order phase transition in 2D
- The discreteness scale is fundamental, not a regularizer

Causal Set Action

Causal Sets

The causal set action was developed over a number of years, first for the bulk, then for spacelike boundaries.

- The action depends on the spacetime dimension
- One measures $(O(N^3))$ the abundance of primitive subgraphs
- Boundary terms are not included in the "bulk" expression
- A separate expression exists for dealing with spacelike boundaries

Unknown: How to deal with timelike boundaries and co-dimension 2 joints? Essential to fully understand this in order to do Monte Carlo experiments.

Causal Sets

To measure the action, we count the number of these primitive subgraphs, called *order intervals*:

One may reduce fluctuations for finite systems by "smearing" over a mesoscale, effectively using all primitive subgraphs.

Interval Abundance Distribution

Causal Sets

- Curve is characteristic, perhaps unique, for a spacetime
- Convergence is slower for higher dimension, curved spacetimes

Partition Function and 2D Phase Transition

Current experiments do not include any boundary terms.

How important are they?

Causal Sets

- 2 Divergence of the Action
- Measuring Curvature: Theory
- Measuring Curvature: Numerics
- Open Problems

Causal Sets

Regions: (2D) Square, Saucer; (3D/4D) Cube, Cylinder, Half Diamond

Observed Fixed-Volume Scaling: $S \sim N^{(d-1)/d} \sim (1/\ell)^{d-1}$

Characterizing the Divergence: 2D

Characterizing the Divergence: 3D

Characterizing the Divergence: 4D

Causal Sets

- We only need to know the *number* of missing elements in each order interval, but *not their internal ordering*
- The number of missing elements in intervals near the boundary tells us something about the extrinsic curvature of

July 24, 2019

Measuring Curvature: Numerics

Divergence of the Action

- Measuring Curvature: Theory

Intervals Near the Boundary (Continuum Geometry)

For a flat boundary in flat 2d space, $V(p,q) = T^2/4$. Expand V in terms of T to order T^{d+1} for a general spacetime with a general boundary.

Geometric observables are evaluated at the midpoint on the boundary.

The First Order Correction

Dimensional Analysis: $V(T) = V_{\text{flat}}(T)[1 + \mathcal{G}T + O(T^2)]$

- It can be shown $\mathcal{G} = c_1 \mathcal{S}_1 + \ldots + c_n \mathcal{S}_n$; \mathcal{S}_i are all independent scalars involving a single derivative of local geometric quantities: metric $g_{\mu\nu}$, tangent vector v^{μ} , normal vector n^{μ}
- Trivially, $\nabla_{\mu}g_{\nu\lambda}=0$
- $n^{\mu}\nabla_{\mu}n_{\nu}$ is not well defined
- It can be shown $v^{\mu}n^{\nu}\nabla_{\mu}n_{\nu}=0$, $v^{\mu}v^{\nu}\nabla_{\mu}v_{\nu}=0$
- Extrinsic curvature: $K = \nabla_{\mu} n^{\mu}$
- Curvature tensor: $v^{\mu}v^{\nu}\nabla_{\mu}n_{\nu}=K_{ab}v^{a}v^{b}$, $v^{\mu}n^{\nu}\nabla_{\mu}v_{\nu}=-K_{ab}v^{a}v^{b}$

$$V(T) = V_{\text{flat}}(T)[1 + (c_1K + c_2K_{ab}v^av^b)T + O(T^2)]$$

Correction Coefficients

We now solve for the coefficients c_1 and c_2

- In 2D, K and K_{ab} are not independent
- $V(T) = V_{\text{flat}}(T)[1 + c_1KT + O(T^2)]$
- Taking a constant-curvature surface, we find $V(T) = \frac{T^2}{4} \left[1 - \frac{1}{2}KT + O(T^2) \right]$
- In 3D, we must consider multiple spacetimes to solve for c_1 , c_2
- With some algebra, we find $V(T) = \frac{\pi T^3}{24} \left[1 + \frac{1}{\pi} \left(K_{ab} v^a v^b - \frac{1}{4} K \right) T + O(T^2) \right]$
- 4D result in progress

Necessary assumptions:

- ullet T is small relative to bulk curvature, $RT^2 \ll 1$
- T is small relative to extrinsic curvature, $KT \ll 1$

- Causal Sets
- 2 Divergence of the Action
- Measuring Curvature: Theory
- 4 Measuring Curvature: Numerics
- Open Problems

Identifying Timelike Boundaries

Causal Sets

Partition a region with a constant-curvature timelike boundary into spatial layers:

Identifying Timelike Boundaries

Causal Sets

The number of relations is correlated with the spatial position:

Using this, we select elements with few relations when the correlation is negative.

Identifying Timelike Boundaries

We measure the *longest chain* and the *longest boundary chain* using this algorithm

From these, we wish to measure the proper time T_M as well as the boundary length T_Σ as $\ell \to 0$.

Previous: $T \propto L\ell$ (Brightwell & Gregory 1992)

Convergence of Longest Chains

Causal Sets

In a 2D Minkowski Diamond...

Hence we may accurately measure T using finite-sized chains using the fit. Convergence is $\log \log L$

Convergence of Boundary Chains

For a 1D boundary, we expect $T = L\ell$

Problem: We find it converges to something dependent on K

Causal Sets

Convergence of Boundary Chains

Causal Sets

We find similar results for maximal chains through the center!

We need to better understand convergence of non-geodesic paths using one side of a partition.

- Causal Sets

Divergence of the Action

- Open Problems

Divergence:

- Analytic expression for the divergence in a 2D square
- 2 High-precision data on the proportionality coefficient a_d
- Rates of convergence (divergence?)

Curvature:

- 1 Methods to measure curvature tensor $K_{\mu
 u}$ and tangent vectors in 3D
- 2 Design experiments in 3D where $K_{\mu\nu} = 0$ but $K \neq 0$.
- Approximation for the half-cone volume in 4D

Timelike (Non-Geodesic) Curves:

- 1 How do maximal chains converge in the half diamond?
- What procedure can we use to study the convergence of discrete paths to a specified continuum curve?
- Can we prove similar results in Riemannian (Euclidean) space?

Measuring Curvature: Numerics

Special thanks to Ian Jubb, Fay Dowker, Sumati Surya, Rafael Sorkin, and OIST for hosting.

