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Overview

We must understand the action in order to use the path integral
approach, learn the phase structure, and identify fixed points &
critical exponents

@ Brief background on causal sets

@ Causal set action: what do we know?

@ Problems with timelike boundaries

@ Measuring boundary geometry: theory

@ Measuring boundary geometry: numerics

@ Current work and open problems
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Causal Sets

@ Causal Sets
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Causal Sets

Causal Sets

Discrete spacetime is represented by a directed acyclic graph
(DAG): nodes are fundamental elements of spacetime and relations
indicate causality.

@ Hawking/Malament: causal structure is enough to recover topology

@ Many results on kinematics - all geometric structure should be
encoded in the graph

@ All causal sets fall into two categories: manifoldlike (random) and
non-manifoldlike (crystalline)

@ Discretize a continuum space via Poisson point process (sprinkling)
into a compact region

@ General causal sets generated using a Markov chain
@ These phases are separeated by a first order phase transition in 2D

@ The discreteness scale is fundamental, not a regularizer

Will Cunningham Timelike Hypersurfaces in Causal Sets July 24, 2019



Causal Sets

Causal Set Action

The causal set action was developed over a number of years, first
for the bulk, then for spacelike boundaries.

The action depends on the spacetime dimension
One measures (O(N3)) the abundance of primitive subgraphs

Boundary terms are not included in the “bulk” expression

A separate expression exists for dealing with spacelike
boundaries

Unknown: How to deal with timelike boundaries and co-dimension
2 joints? Essential to fully understand this in order to do Monte
Carlo experiments.
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Causal Sets

Causal Set Action: Measurement

To measure the action, we count the number of these primitive
subgraphs, called order intervals:

R &

One may reduce fluctuations for finite systems by “smearing” over
a mesoscale, effectively using all primitive subgraphs.
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Causal Sets

Interval Abundance Distribution
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@ Curve is characteristic, perhaps unique, for a spacetime

@ Convergence is slower for higher dimension, curved spacetimes
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Causal Sets

Partition Function and 2D Phase Transition
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Current experiments do not include any boundary terms.
How important are they?
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Divergence of the Action

© Divergence of the Action
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Divergence of the Action

Timelike Boundaries

The original derivation of the action explicitly assumes convexity of
the region: only spacelike or null boundaries allowed

10°
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Elements (N)
Regions: (2D) Square, Saucer; (3D/4D) Cube, Cylinder, Half Diamond

Observed Fixed-Volume Scaling: S ~ N(@=1/d ~ (1/¢)9-1
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Divergence of the Action

Characterizing the Divergence: 2D

Ansatz: Sy, = agV/(X)/¢91
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Divergence of the Action

Characterizing the Divergence: 3D

Ansatz: Sy, = agV/(X)/¢91
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Divergence of the Action

Characterizing the Divergence: 4D

Ansatz: Sy, = agV/(X)/¢91
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Divergence of the Action

Partial Solution: Nullification

The divergence disappears when we consider x, y in the region of
interest and z (such that y < z < x) in the nullified region:
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@ We only need to know the number of missing elements in
each order interval, but not their internal ordering

@ The number of missing elements in intervals near the
boundary tells us something about the extrinsic curvature of
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Measuring Curvature: Theory

© Measuring Curvature: Theory
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Measuring Curvature: Theory

Intervals Near the Boundary (Continuum Geometry)

For a flat boundary in flat 2d space, V(p, q) = T?/4. Expand V in
terms of T to order T9t! for a general spacetime with a general
boundary.

p

Geometric observables are evaluated at the midpoint on the boundary.
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Measuring Curvature: Theory

The First Order Correction

Dimensional Analysis: V(T) = Vau(T)[1 +GT + O(T?)]

It can be shown G = ¢;S1 + ... + ¢,Sp; S; are all independent
scalars involving a single derivative of local geometric
quantities: metric g,,,,, tangent vector v#, normal vector n#
Trivially, V,g,» =0

n*V ,n, is not well defined

It can be shown v¥*n"V n, =0, vFv'V, v, =0

Extrinsic curvature: K =V, n#

Curvature tensor: vFv'Vn, = Kopvavh,

vHn'V VV:—KbVV

V( T) = Vﬂat(T)[l + (ClK + C2KabVaVb)T + O( Tz)]
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Measuring Curvature: Theory

Correction Coefficients

We now solve for the coefficients ¢; and ¢

In 2D, K and K, are not independent

o V(T) = Vau(T)[L + aKT + O(T?)]

Taking a constant-curvature surface, we find

V(T)= 22 [1- KT + O(T?)]

In 3D, we must consider multiple spacetimes to solve for ¢, ¢

With some algebra, we find

3
V(T) =2 [1+ L (KapvavP — 1K) T+ O(T?)]
@ 4D result in progress

Necessary assumptions:
e T is small relative to bulk curvature, RT?2 < 1
@ T is small relative to extrinsic curvature, KT < 1
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Measuring Curvature: Numerics

@ Measuring Curvature: Numerics
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Measuring Curvature: Numerics

|dentifying Timelike Boundaries

Partition a region with a constant-curvature timelike boundary into
spatial layers:
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Measuring Curvature: Numerics

|dentifying Timelike Boundaries

The number of relations is correlated with the spatial position:
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Using this, we select elements with few relations when the
correlation is negative.
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Measuring Curvature: Numerics

|dentifying Timelike Boundaries

We measure the longest chain and the longest boundary chain
using this algorithm

From these, we wish to measure the proper time Ty, as well as the
boundary length Ty as ¢ — 0.
Previous: T o LY (Brightwell & Gregory 1992)
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Measuring Curvature: Numerics

Convergence of Longest Chains

In a 2D Minkowski Diamond...
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Hence we may accurately measure T using finite-sized chains using
the fit. Convergence is loglog L
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Measuring Curvature: Numerics

Convergence of Boundary Chains

For a 1D boundary, we expect T = L{
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Problem: We find it converges to something dependent on K
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Convergence of Boundary Chains

Measuring Curvature: Numerics

We instead find T = L¢/(alog K + b)
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We find similar results for maximal chains through the center!
We need to better understand convergence of non-geodesic
paths using one side of a partition.
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Open Problems

© Open Problems
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Open Problems

Current/Future Work

Divergence:
o Analytic expression for the divergence in a 2D square
e High-precision data on the proportionality coefficient ay
e Rates of convergence (divergence?)
Curvature:
o Methods to measure curvature tensor K;,,, and tangent vectors in 3D
e Design experiments in 3D where K, = 0 but K # 0.
e Approximation for the half-cone volume in 4D
Timelike (Non-Geodesic) Curves:
o How do maximal chains converge in the half diamond?
e What procedure can we use to study the convergence of discrete paths to a specified continuum curve?

e Can we prove similar results in Riemannian (Euclidean) space?
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Open Problems

Special thanks to lan Jubb, Fay Dowker, Sumati Surya, Rafael
Sorkin, and OIST for hosting.
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