

GPU Acceleration for

Causal Set Quantum Gravity

Will Cunningham

Motivation

$>4-\mathrm{D}$ Network of Spacetime Points ($\mathrm{t}, \theta, \phi, \chi$) \Rightarrow Finding Links is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ Complexity
$>$ Conformal Time: $\eta(t)=\frac{2 a}{3 \alpha} \int_{0}^{a t} \sinh ^{-2 / 3}\left(\frac{3 t^{\prime}}{2 a}\right) d t^{\prime}$
$>$ Hyperbolic Law of Cosines: $d x=f\left(\theta_{1}, \varphi_{1}, \chi_{1}, \theta_{2}, \varphi_{2}, \chi_{2}\right)$
$>$ Causal Connection: $d x<d \eta$

Attempt 1

$>$ Each thread compares a pair of points
$>$ Shared Memory:
*Prefix Sum, Reduction, Compression
$>$ Atomic Add to Global Index

> Write to Global Memory

Attempt 2

$>$ Shared memory is not always a good choice
$>$ Atomic operations good if sparse
$>$ Finding the (i, j) from tid is $\mathrm{O}(N)$ in complexity

http://jamesmccaffrey.files.wordpress
.com/2010/05/matrixtoarray.jpg?w=3 $91 \& h=325$

Attempt 3

> Triangular Elements Mapped
\star Now the operation is $\mathrm{O}(1)$ complexity
$>$ Maximize Instruction Throughput

1. 2048 Threads per Multiprocessor
2. 64 Warps per Multiprocessor
3. 16 Thread Blocks per Multiprocessor
4. 1024 Threads Per Thread Block Was using $32 \times 32 \times 1$ to maximize \#4 Now using $128 \times 1 \times 1$ to maximize \#1-3

Attempt 4

$>$ Shared memory re-introduced
※ One node shared among a block now
$>$ Each thread handles 2 pairs
*Total of $N^{2} / 4$ threads executed in the kernel
*Atomic addition handled in pairs (rare to get a pair)

Attempt 5 (Final)

$>$ Texture/Surface Memory

* Not appropriate for this task (slower by 2\%)
\& Better for nearest neighbor problems
$>$ Mapped Pinned Memory (Zero-Copy)
* Negligible increase in speed
* Good for single read/write to global
$>$ Bitonic Sort of Edge List
* Very fast: $\mathrm{O}\left(\log ^{2} N\right)$ in complexity
> Result: 17.23 s on GPU vs 304.25 s on CPU for $\mathbf{5 1 , 2 0 0}$ spacetime nodes

Next Steps

$>$ Generating Random Numbers
*CURAND Package
> Traversing the Network
\star Given an entrance and an exit, what percent of random walks succeed?

* Test every combination of entrances/exits
*As a function of the dark energy

Questions?

