

GPU Acceleration for Causal Set Quantum Gravity Will Cunningham

Motivation

- > 4-D Network of Spacetime Points (t, θ, ϕ , χ) > Finding Links is O(N^2) Complexity
- ➢ Conformal Time: $\eta(t) = \frac{2a}{3\alpha} \int_0^{at} \sinh^{-2/3} \left(\frac{3t'}{2a} \right) dt'$ ➢ Hyperbolic Law of Cosines: $dx = f(\theta_1, \phi_1, \chi_1, \theta_2, \phi_2, \chi_2)$ ➢ Causal Connection: $dx < d\eta$

- Each thread compares a pair of points
- Shared Memory:
 - Prefix Sum, Reduction, Compression
- Atomic Add to Global Index
- Write to Global Memory

Shared memory is not always a good choice
Atomic operations good if sparse
Finding the (*i,j*) from *tid* is O(N) in complexity

http://jamesmccaffrey.files.wordpress .com/2010/05/matrixtoarray.jpg?w=3 91&h=325

Triangular Elements Mapped \mathbf{N} Now the operation is O(1) complexity Maximize Instruction Throughput 1. 2048 Threads per Multiprocessor 2. 64 Warps per Multiprocessor **16 Thread Blocks per Multiprocessor** 3. 4. 1024 Threads Per Thread Block Was using 32 x 32 x 1 to maximize #4 Now using 128 x 1 x 1 to maximize #1-3

Shared memory re-introduced
One node shared among a block now
Each thread handles 2 pairs
Total of ^{N²}/₄ threads executed in the kernel
Atomic addition handled in pairs (rare to get a pair)

Attempt 5 (Final)

Texture/Surface Memory Not appropriate for this task (slower by 2%) Better for nearest neighbor problems Mapped Pinned Memory (Zero-Copy) Negligible increase in speed Good for single read/write to global Bitonic Sort of Edge List **\bullet** Very fast: O(log² N) in complexity Result: 17.23 s on GPU vs 304.25 s on CPU for 51,200 spacetime nodes

Next Steps

Generating Random Numbers CURAND Package Traversing the Network Given an entrance and an exit, what percent of random walks succeed? Test every combination of entrances/exits As a function of the dark energy

Questions?